COllective INtelligence with Sequences of Actions - Coordinating Actions in Multi-agent Systems

نویسندگان

  • Pieter Jan't Hoen
  • Sander M. Bohte
چکیده

The design of a Multi-Agent System (MAS) to perform well on a collective task is non-trivial. Straightforward application of learning in a MAS can lead to sub optimal solutions as agents compete or interfere. The COllective INtelligence (COIN) framework of Wolpert et al. proposes an engineering solution for MASs where agents learn to focus on actions which support a common task. As a case study, we investigate the performance of COIN for representative token retrieval problems found to be difficult for agents using classic Reinforcement Learning (RL). We further investigate several techniques from RL (model-based learning, Q( λ )) to scale application of the COIN framework. Lastly, the COIN framework is extended to improve performance for sequences of actions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage Coordination of FACTS Devices in Power Systems Using RL-Based Multi-Agent Systems

This paper describes how multi-agent system technology can be used as the underpinning platform for voltage control in power systems. In this study, some FACTS (flexible AC transmission systems) devices are properly designed to coordinate their decisions and actions in order to provide a coordinated secondary voltage control mechanism based on multi-agent theory. Each device here is modeled as ...

متن کامل

Identifying overlapping communities using multi-agent collective intelligence

The proposed algorithm in this research is based on the multi-agent particle swarm optimization as a collective intelligence due to the connection between several simple components which enables them to regulate their behavior and relationships with the rest of the group according to certain rules. As a result, self-organizing in collective activities can be seen. Community structure is crucial...

متن کامل

Together, Is Anything Possible? A Look at Collective Commitments for Agents

In this research, commitments – specifically collective commitments – are looked at as a way to model connections between agents in groups. Using the concepts and ideas from action languages, we propose to model these commitments as actions along with the other basic actions that autonomous agents are capable of performing. The languages developed will be tested against different examples from ...

متن کامل

Utilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs

Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...

متن کامل

Evolutionary Multi-agent Systems

In Multi-Agent learning, agents must learn to select actions that maximize their utility given the action choices of the other agents. Cooperative Coevolution offers a way to evolve multiple elements that together form a whole, by using a separate population for each element. We apply this setup to the problem of multi-agent learning, arriving at an evolutionary multi-agent system (EA-MAS). We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003